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Several simple three-dimensional Fermi-gas models for potential energy curves of diatomic 
molecules are suggested. Bond-charge parameters close to those predicted by the earlier point bond- 
charge model of Borkman, Simons and Parr [J. Chem. Phys. 49, 1055 (1968); 50, 58 (1969)J are obtained 
for models assuming uniform spherical or elliptical electron distributions in the bond region. 
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1. Introduction 

The point of departure for this work is the simple bond-charge model for 
potential curves of diatomic molecules described by Borkman, Simons and Parr 
[1]. They considered a point charge of magnitude - q e  restricted to motion in 
one dimension over a length vR, where R is the internuclear separation. The 
kinetic energy of such a charge varies as 1/R 2 and the electrostatic interaction 
with two point-charge atoms of charge Z e  = �89 gives a potential energy varying 
as 1/R. This startlingly simple model gives rise to a total electronic energy of the 
form: 

W ( R )  = T(R)  + V(R) = Wo + W1/R + W2/R 2 , (1) 

which reasonably well represents experimental diatomic potential curves near 
equilibrium. Further, the values of q which result from fitting the model to ex- 
periment can be interpreted as bond orders. 

Here, we investigate three other simple models, two of which also yield the 
form Eq. (1). The new models all involve three-dimensional charge distributions. 
They also employ the assumption that the electronic kinetic energy depends upon 
the electron density in the same way as in a statistical or Thomas-Fermi theory. 
That is, a kinetic energy density proportional to the 5/3 power of the density is 
assumed. 

We consider that at every point in coordinate space, momentum states are 
fully occupied up to the Fermi momentum PF = h kF, as in a degenerate Fermi 
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gas [2]. This gives the fundamental density-momentum relation 

o(r) = ~ ~ dk~p~d(r, s) r S) 
$ 

2 k~(,) 
- (2~3) 4~ ~ dkk a 

0 

1 k~(r) (2) ~ ( r )  = ~ . 

The average (kinetic) energy at a point in space is given by 

T(r) - ~ dEEN(E) 
dEN(E) ' (3) 

where N(E) is the energy distribution function for a non-interacting Fermi gas 
confined to a volume V and equals 

m 3/2 V 
N(E) d E -  21/2/z2h 3 E~dE, (4) 

where m is the particle mass. Carrying out the integrations and expressing the 
result in terms of the Fermi momentum, one obtains 

3 k~(r) (5) 
T ( r ) -  5 2m 

Thus the total kinetic energy is given by 

T =  ~dre( r  ) T(r) 

3h2 (3 t2 3 
- 10m \8-~J ~dr~5/a(r), (6) 

where Eq. (2) has been used. This relation is assumed for all the models discussed 
here. 

2. Spherical Charge Density Model 

The first model assumes that the bond charge - eq in a homonuclear diatomic 
molecule is uniformly distributed in a sphere of radius ~R/2 located at the center 
of the bond, while point charges Ze =�89 are located at each of the atoms. Thus 
for the electron density we have 

Q(r) = ~o O(~R/2 - r) , (7) 

where ~o is a constant, r is the radial variable in a spherical coordinate system 
located at the bond center and 

O ( x ) = { ;  for x > 0 ,  
for x < 0 .  (8) 

The constant ~o is determined by normalization: 

~o~z~3R 3 
q = ~ dr~(r) - 6 (9) 
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Computing the kinetic energy via Eq. (6), we obtain 

W2 hZ ( 3 14/3 q5/3 
T -  (10)  

R 2 - 2m \2~-~] e :R 2" 

For the electronic potential energy we obtain 
( 9 .  

V-- W1 l e~s (zZ-4Zq) for 
- ( l  J) 

R [___~ (Z 2 e  2Zq [ 3 e 2 _ 1 ] )  for e >  1 
~3 

The case ~ < 1 is equivalent from the point of view of potential energy to the 
point-charge Borkman-Simons-Parr model. When c~ exceeds 1, the bond charge 
density extends beyond the positions of the two atoms and different values of q 
result. The two parameters q and ~ are determined from Re, the experimental 
equilibrium distance and ke, the quadratic force constant: 

"Re d2W dW = 0 "  = k  e (12) 
dR ' d ~  Re " 

Values of q and e for the ground states of 17 homonuclear diatomic molecules 
are presented in Table 1. Figure 1 permits a comparison of these values of q to 
those obtained from the Borkman-Simons-Parr one-dimensional model and to 
the simple bond order. It will be seen that the bond charges from the spherical 
Fermi-gas model are in qualitative agreement with the one-dimensional values 
but tend to be a bit higher throughout, especially in the neighborhood of N 2. Note 
also that all values of ~ exceed I. 

Table 1. Bond charge and size parameters for spherical Fermi-gas model" 

Molecule q a 

H z 1.78 5.24 
Li 2 1.15 1.33 
B 2 2.16 1.70 
C2 2.79 1.88 
N 2 3.49 2.08 
Oz 2.84 2.03 
F2 2.17 1.87 
Na2 1.14 1.21 
Si 2 2.52 1.24 
P2 3.21 1.33 
S 2 3.04 1.35 
C1 z 2.68 1.34 
K z 1.21 1.03 
Se 2 3.06 1.23 
Br 2 2.76 1.21 
Te 2 3.20 1.06 
12 2.85 1.09 

a Model of Eqs. (10) and (11) of text. Bond-charge parameter q and sphere-size parameter c~ determined 
from Eq. (12) of text. 
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Fig.  1 

3. Elliptical Charge Density Model 

A potential energy W(R)  of the form Eq. (1) also results when one assumes 
a uniform charge distribution within an ellipsoidal volume. This more nearly 
represents the shape of a molecular electronic charge distribution. We employ 

i~, A Af_ FB FA _ FB 
elliptical [prolate spheroidal] coordinates ~ - R , i /=  R , and ~0, where 

rA and rB are distances from nuclei A and B, respectively, to an arbitrary point in 
space and q~ is an angle of rotation about the bond axis. Since curves of constant 
are ellipses with foci at atoms A and B, we can employ the step function to cut off 
the density at a value r =/3. Thus we have 

0(r) = Oo 0(/3 - r (13) 

and the charge normalization condition takes the form 

q = Qo ~ a~o d~ ~ dr 2 - . 2 )  
0 - 1  1 

(14) 
•orcR 3 

_ ~ (~3_/3) ,  

which determines 90- Proceeding as before, we obtain the electronic kinetic energy 
expression via Eq. (4), yielding 

3h2 [. 9 _]2/3 q 5/3 
R W2 - 10m 47z/(/33-fl) R 2 " 

T -  (15) 
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Table 2. Bond charge and size parameters for elliptical Fermi-gas modeP 

Molecule q fl 

H z 1.13 2.9 
Li z 0.99 1.26 
B z 1.82 1.43 

C 2 2.31 1.51 
N 2 2.85 1.61 
0 2 2.33 1.58 

F 2 1.80 1.50 
Na2 0.99 1.21 
Si z 2.19 1.23 
P2 2.77 1.26 
S z 2.62 1.27 
CI z 2.31 1.27 
K 2 1.04 1.14 
Se 2 2.65 1.22 
Br 2 2.39 1.21 
Te z 2.76 1.16 

I 2 2.46 1.17 

a Model of Eqs. (15) and  (16) of text. Bond-charge 
mined from Eq. (12) of text. 

parameter q and ellipsoid-size parameter fi deter- 

The potential energy VA~ due to the interaction of the negative charge distribution 
with the atomic charge at A is 

VA = - Z e ~ d r  p(r) =-Ze2eo dq~ d~t d~ ( l -q)  
rA 0 - 1 1 

- -  Z e 2  Oo ~zR2 (16) 
- 2 (/32 _ 1). 

Atom B experiences the same potential. When one adds the atomic repulsion term, 
the resulting expression for the potential energy in this model is 

_ Z2 6 q_. (17) 
R R 

The values of q and/3 obtained by fitting the experimental R e and Ic e are displayed 
in Table 2. Note that the values of/3 are small enough that (except for H2) the 
charge is held rather close to the bond axis. Reference to Fig. 1 shows that the 
elliptical model gives values ofq very close to those obtained by Borkman, Simons 
and Parr. 

4. Elliptical Charge Density Model with Ion Core 

As an elaboration of the foregoing two-parameter models, one may consider 
a three-parameter model which accounts for the finite size of the ion cores by 
excluding a spherical volume about each atom center from an ellipsoidal charge 
density allotted to the electrons. Thus the bond charge distribution is constant 
in an ellipsoidal volume except for two spherical "bubbles" of radius ~ within 
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which it vanishes and it also vanishes outside the ellipsoidal boundary defined by 
= ft. In terms of step functions, the density for this model is 

~( ~, ,7) = ~o 0 ( ~  - ~) O ( r  , - ~) O(r~ - ~) ( ,8 )  

= Oo O ( f l  - ~) O ( � 8 9 1 6 2  + t l ]  - 0 0 ( � 8 9  - rl] - O. 
The step functions give integration limits such that 

1 < ~ < f l ;  (19) 
b-~<__~<~-b, b-2~/R. 

The bond-charge normalization condition is then 

IQdz=q=002~  ~ -  ~d~ i dq( ~2-q2) O(f l -~)O(r  A-()O(r.-~) 
1 -1 

----0o2~ d{ ~ dtl({Z-tt2)+ 
b-g 

R 2 3 4 3 q--0o2~Z ~-  (-~[fl -fl]-~b ). 

d~ j dy](~2-/~ 2) , (20) 
l+b -1 

Proceeding as before, the following expression for the electronic kinetic energy is 
obtained: 3h2{ 9 12/3 q5/3 

T =  10m \~-~2] ~-([f13-fl]-2b3) -2/3" (21) 

When the electronic-nuclear attraction potential is evaluated and the ion-core 
repulsion term is added, one obtains 

e 2 Z  2 6Zqe2 [fl2-1-b2-1/3b3:l 
V - R R ~g 2/~ ~ ~.~5 �9 (22) 

The denominators in the T and V expressions can be expanded in binomial series 
to give 

3h2[ 9 ]2/3q5/3[ 32 (~_)3 640 (~_)6 ] 

T = ~  4rc2(fl 3_fl)] ~T-  1 + 3(f13--fl) 3(fl~fl)2 + ' "  , 
(23) 

Z2e2 6Zqe2[1- 4_ (~_)a + (6_fl) 8 (~_)3 l . . . .  
V=  R fiR (f12_ 1) ( f l - 3 ~  3 " 

Thus this model includes higher powers of (l/R) than occur in the earlier models. 
In particular, the presence of a (l/R) 3 term represents a more realistic description 
of the potential than does the form Eq. (1). One could now proceed to determine 
fl, q, and ( by fitting to the experimental equilibrium distance, Re, and the quadratic 
and cubic force constants k e and le. However, any physically intuitive interpreta- 
tion of their significance would be partially vitiated by the fact that this model 
involves a partial contradiction to the virial theorem. If one postulates the general 
form oo 

W ( R ) =  ~ WnR-', (24) 
n=O 
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the virial theorem predicts that 

d W  Wz 21413 ( n -  1) W. 
- T =  W + R ~ -  = Wo R2 R3 Rn , 

(25) 
a w w l  w3 (n - 2) w. 

V = 2 W + R d - R  - = 2 W ~  R R 3 R" " "  

Thus while the present three-parameter model gives a correctly behaving energy 
insofar as V has no 1/R 2 term and T has no 1/R term, it falls short in that T has 
no 1/R 3 term. 

5. Conclusions 

A point of diminishing returns generally is reached when one complicates a 
simple model too much. Of the models we have here considered we prefer the two- 
parameter  elliptical model of Section 3. Results with it demonstrate that the 
Borkman-Simons-Parr  model can successfully be extended to three dimensions 
without significant change in the values of (or the interpretation of) the bond 
charge parameter.  

In this work, in order to retain maximum simplicity in extending the point 
bond-charge model to three dimensions, a uniform density distribution has been 
assumed. Exploring a more realistic distribution, perhaps closer to a molecular 
Thomas-Fermi  density, could be profitable. Further, the success of Simons [3] 
in predicting force constants for triatomic molecules using a point charge-point 
dipole model suggests that suitably simple three-dimensional Fermi-gas models 
for vibrating polyatomic molecules would be worth examining. 
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